Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(26): 14636-14641, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541064

RESUMO

Understanding the coordination of cell-division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell-cycle duration is temperature, as it can accelerate or decelerate the rate of biochemical reactions. However, controlled experiments at the cellular scale are challenging, due to the limited availability of biocompatible temperature sensors, as well as the lack of practical methods to systematically control local temperatures and cellular dynamics. Here, we demonstrate a method to probe and control the cell-division timing in Caenorhabditis elegans embryos using a combination of local laser heating and nanoscale thermometry. Local infrared laser illumination produces a temperature gradient across the embryo, which is precisely measured by in vivo nanoscale thermometry using quantum defects in nanodiamonds. These techniques enable selective, controlled acceleration of the cell divisions, even enabling an inversion of division order at the two-cell stage. Our data suggest that the cell-cycle timing asynchrony of the early embryonic development in C. elegans is determined independently by individual cells rather than via cell-to-cell communication. Our method can be used to control the development of multicellular organisms and to provide insights into the regulation of cell-division timings as a consequence of local perturbations.


Assuntos
Temperatura Corporal/fisiologia , Divisão Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Pontos Quânticos/química , Termometria , Animais , Caenorhabditis elegans/embriologia , Nanodiamantes/química , Termometria/instrumentação , Termometria/métodos
2.
Nano Lett ; 19(3): 2020-2026, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30779590

RESUMO

Nanodiamond-gold nanoparticle (ND-AuNP) dimers constitute a potent tool for controlled thermal heating of biological systems on the nanoscale, by combining a local light-induced heat source with a sensitive local thermometer. Unfortunately, previous solution-based strategies to build ND-AuNP conjugates resulted in large nanoclusters or a broad population of multimers with limited separation efficiency. Here, we describe a new strategy to synthesize discrete ND-AuNP dimers via the synthesis of biotin-labeled DNA-AuNPs through thiol chemistry and its immobilization onto the magnetic bead (MB) surface, followed by reacting with streptavidin-labeled NDs. The dimers can be easily released from MB via a strand displacement reaction and separated magnetically. Our method is facile, convenient, and scalable, ensuring high-throughput formation of very stable dimer structures. This ligand-induced self-assembly approach enables the preparation of a wide variety of dimers of designated sizes and compositions, thus opening up the possibility that they can be deployed in many biological actuation and sensing applications.


Assuntos
Técnicas Biossensoriais , DNA/química , Nanopartículas Metálicas/química , Nanodiamantes/química , Biotina/química , DNA/isolamento & purificação , Ouro/química , Ligantes , Polímeros/química , Estreptavidina/química
3.
Phys Rev Lett ; 122(4): 043603, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768351

RESUMO

We investigate thermalization dynamics of a driven dipolar many-body quantum system through the stability of discrete time crystalline order. Using periodic driving of electronic spin impurities in diamond, we realize different types of interactions between spins and demonstrate experimentally that the interplay of disorder, driving, and interactions leads to several qualitatively distinct regimes of thermalization. For short driving periods, the observed dynamics are well described by an effective Hamiltonian which sensitively depends on interaction details. For long driving periods, the system becomes susceptible to energy exchange with the driving field and eventually enters a universal thermalizing regime, where the dynamics can be described by interaction-induced dephasing of individual spins. Our analysis reveals important differences between thermalization of long-range Ising and other dipolar spin models.

4.
Nature ; 543(7644): 221-225, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28277511

RESUMO

Understanding quantum dynamics away from equilibrium is an outstanding challenge in the modern physical sciences. Out-of-equilibrium systems can display a rich variety of phenomena, including self-organized synchronization and dynamical phase transitions. More recently, advances in the controlled manipulation of isolated many-body systems have enabled detailed studies of non-equilibrium phases in strongly interacting quantum matter; for example, the interplay between periodic driving, disorder and strong interactions has been predicted to result in exotic 'time-crystalline' phases, in which a system exhibits temporal correlations at integer multiples of the fundamental driving period, breaking the discrete time-translational symmetry of the underlying drive. Here we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of about one million dipolar spin impurities in diamond at room temperature. We observe long-lived temporal correlations, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions. This order is remarkably stable to perturbations, even in the presence of slow thermalization. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.

5.
Nature ; 532(7600): 476-9, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27064902

RESUMO

Insights into complex phenomena in quantum matter can be gained from simulation experiments with ultracold atoms, especially in cases where theoretical characterization is challenging. However, these experiments are mostly limited to short-range collisional interactions; recently observed perturbative effects of long-range interactions were too weak to reach new quantum phases. Here we experimentally realize a bosonic lattice model with competing short- and long-range interactions, and observe the appearance of four distinct quantum phases--a superfluid, a supersolid, a Mott insulator and a charge density wave. Our system is based on an atomic quantum gas trapped in an optical lattice inside a high-finesse optical cavity. The strength of the short-range on-site interactions is controlled by means of the optical lattice depth. The long (infinite)-range interaction potential is mediated by a vacuum mode of the cavity and is independently controlled by tuning the cavity resonance. When probing the phase transition between the Mott insulator and the charge density wave in real time, we observed a behaviour characteristic of a first-order phase transition. Our measurements have accessed a regime for quantum simulation of many-body systems where the physics is determined by the intricate competition between two different types of interactions and the zero point motion of the particles.

6.
Nat Commun ; 6: 7046, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25944151

RESUMO

The dynamic structure factor is a central quantity describing the physics of quantum many-body systems, capturing structure and collective excitations of a material. In condensed matter, it can be measured via inelastic neutron scattering, which is an energy-resolving probe for the density fluctuations. In ultracold atoms, a similar approach could so far not be applied because of the diluteness of the system. Here we report on a direct, real-time and nondestructive measurement of the dynamic structure factor of a quantum gas exhibiting cavity-mediated long-range interactions. The technique relies on inelastic scattering of photons, stimulated by the enhanced vacuum field inside a high finesse optical cavity. We extract the density fluctuations, their energy and lifetime while the system undergoes a structural phase transition. We observe an occupation of the relevant quasi-particle mode on the level of a few excitations, and provide a theoretical description of this dissipative quantum many-body system.

7.
Proc Natl Acad Sci U S A ; 110(29): 11763-7, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818599

RESUMO

We experimentally study the influence of dissipation on the driven Dicke quantum phase transition, realized by coupling external degrees of freedom of a Bose-Einstein condensate to the light field of a high-finesse optical cavity. The cavity provides a natural dissipation channel, which gives rise to vacuum-induced fluctuations and allows us to observe density fluctuations of the gas in real-time. We monitor the divergence of these fluctuations over two orders of magnitude while approaching the phase transition, and observe a behavior that deviates significantly from that expected for a closed system. A correlation analysis of the fluctuations reveals the diverging time scale of the atomic dynamics and allows us to extract a damping rate for the external degree of freedom of the atoms. We find good agreement with our theoretical model including dissipation via both the cavity field and the atomic field. Using a dissipation channel to nondestructively gain information about a quantum many-body system provides a unique path to study the physics of driven-dissipative systems.


Assuntos
Gases/química , Modelos Químicos , Teoria Quântica , Temperatura Baixa , Transição de Fase , Física , Fatores de Tempo
8.
Science ; 333(6047): 1266-9, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21817017

RESUMO

Photons are excellent information carriers but normally pass through each other without consequence. Engineered interactions between photons would enable applications as varied as quantum information processing and simulation of condensed matter systems. Using an ensemble of cold atoms strongly coupled to an optical cavity, we found that the transmission of light through a medium may be controlled with few photons and even by the electromagnetic vacuum field. The vacuum induces a group delay of 25 nanoseconds on the input optical pulse, corresponding to a light velocity of 1600 meters per second, and a transparency of 40% that increases to 80% when the cavity is filled with 10 photons. This strongly nonlinear effect provides prospects for advanced quantum devices such as photon number-state filters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...